

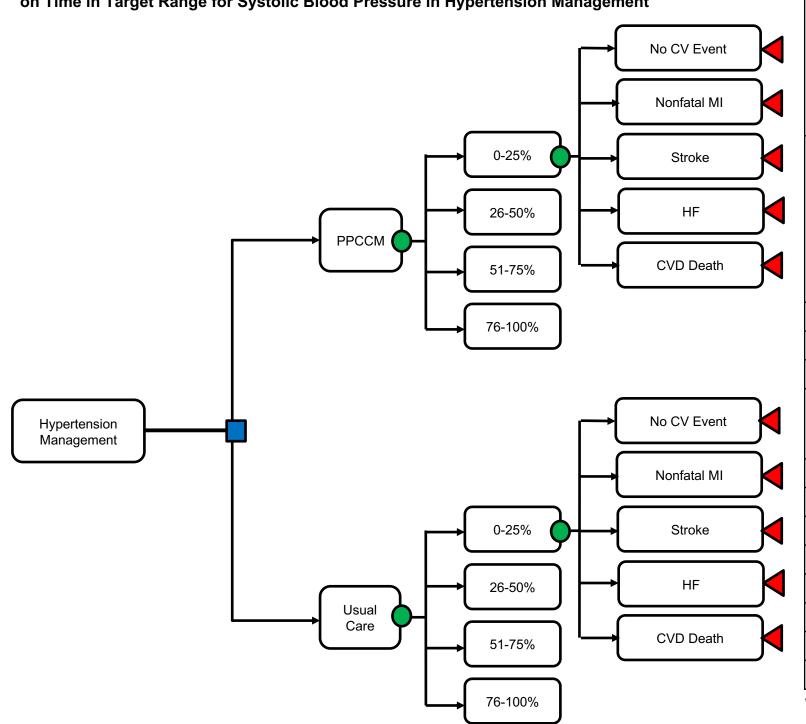
The Cost-Effectiveness of Pharmacist-Physician Collaborative Care Models vs. Usual Care on Time in Target Systolic Blood Pressure Range in Patients with Hypertension from the Payer Perspective

Jessica S. Jay, PharmD; Stephen C. Ijioma, PharmD; David A. Holdford, RPh, MS, PhD; Dave L. Dixon, PharmD; Evan M. Sisson, PharmD; Julie A. Patterson, PharmD, PhD

Virginia Commonwealth University School of Pharmacy Center for Pharmacy Practice Innovation, Richmond, VA

Background

- Hypertension is highly prevalent in the United States, affecting nearly half of all adults (43%).¹
- Time in target range (TTR) for systolic BP is a novel measure
 of BP control consistency that is independently associated
 with increased cardiovascular (CV) risk.²
- Studies have shown that pharmacist-physician collaborative care models (PPCCM) for hypertension management significantly improve blood pressure (BP) control rates and provide consistent control of BP.^{3,4}


Objective

 The objective of this study was to compare the costeffectiveness of PPCCM with usual care for the management of hypertension from the payer perspective.

Methods

- We used a decision analytic model with a three-year time horizon based on published literature and publicly available data.
- The population consisted of adult patients who had a previous diagnosis of high BP (office-based BP > 140/90 mmHg) or were receiving antihypertensive medication(s).

Figure 1. Decision Tree Analysis for the Cost-Benefit of PPCCM Compared with Standard Usual Care on Time in Target Range for Systolic Blood Pressure in Hypertension Management

Methods

Base-case **Variables** Reference Range Probability of TTR for Systolic BP by Hypertension Management Approach Dixon et al. 2020 0.210 0.170-0.260 0-25% 0.360 0.290-0.430 Dixon et al, 2020 26-50% 0.240-0.370 Dixon et al, 2020 51-75% 0.310 0.098-0.150 Dixon et al, 2020 76-100% 0.120 **Usual Care** 0.400-0.600 Dixon et al, 2020 0-25% 0.550 0.270-0.400 Dixon et al, 2020 26-50% 0.340 0.042-0.064 Dixon et al, 2020 51-75% 0.050 0.060 0.044-0.066 76-100% Dixon et al, 2020

				·
t	Probability of CV	Events by TTR	for Systolic BP	
	Outcome event rates of patients in TTR for Systolic BP 0-25%			
	Nonfatal MI	0.035	0.027-0.045	Wright et al, 2015
	Stroke	0.020	0.014-0.028	Wright et al, 2015
	Heart failure	0.022	0.016-0.031	Wright et al, 2015
)	CVD death	0.017	0.012-0.024	Wright et al, 2015
<u>,</u>	No CV event	0.906	-	Calculation
	Hazard ratio of patients in TTR for Systolic BP 26-50%			
	Nonfatal MI	0.83	0.57-1.18	Fatani et al, 2021
•	Stroke	0.83	0.55-1.27	Fatani et al, 2021
•	Heart failure	1.30	0.94-2.01	Fatani et al, 2021
	CVD death	0.69	0.42-1.15	Fatani et al, 2021
	No CV event	1.03	-	Calculation
•	Hazard ratio of patients in TTR for Systolic BP 51-75%			
	Nonfatal MI	0.87	0.61-1.24	Fatani et al, 2021
	Stroke	0.58	0.36-0.93	Fatani et al, 2021
	Heart failure	0.84	0.54-1.29	Fatani et al, 2021
	CVD death	0.53	0.30-0.92	Fatani et al, 2021
	No CV event	1.12	-	Calculation

Tromatai iii	0.0.	0.01	' atain ot al, 202				
Stroke	0.58	0.36-0.93	Fatani et al, 2021				
Heart failure	0.84	0.54-1.29	Fatani et al, 2021				
CVD death	0.53	0.30-0.92	Fatani et al, 2021				
No CV event	1.12	-	Calculation				
Hazard ratio of patients in TTR for Systolic BP 76-100%							
Nonfatal MI	0.69	0.46-1.04	Fatani et al, 2021				
Stroke	0.40	0.22-0.73	Fatani et al, 2021				
Heart failure	0.59	0.34-1.02	Fatani et al, 2021				
CVD death	0.45	0.23-0.86	Fatani et al, 2021				
No CV event	1.25	-	Calculation				
Programmatic Costs							
Annual PPCCM Pharmacist Visits, No.	6	4-12	Dixon et al, 2020				
PPCCM cost per visit	\$24	\$19-\$29	ASHP, 2019				


Programmatic Costs						
Annual PPCCM Pharmacist Visits, No.	6	4-12	Dixon et al, 2020			
PPCCM cost per visit	\$24	\$19-\$29	ASHP, 2019			
Annual Physician Visits, No.						
PPCCM Group	1	1-2	Assumption			
Usual Care	3	1-6	Dixon et al, 2020			
Physician cost per visit	\$90	\$72-\$108	CMS, 2019			
Total cost of PPCCM	\$702	\$562-\$842	ASHP, 2019			
Total cost of usual care	\$810	\$648-\$972	CMS, 2019			
Downstream Healthcare Costs						
One-time cost of nonfatal MI	\$24.089	\$15.372-\$32.306	Bress et al. 2017			

	One-time cost of nonfatal MI	\$24,089	\$15,372-\$32,306	Bress et al, 201
4	One-time cost of stroke	\$15,678	\$6,001-\$42,039	Bress et al, 201
	One-time cost of heart failure	\$11,678	\$11,669-\$16,580	Bress et al, 201
	One-time cost of CVD death	\$19,514	\$12,560-\$33,024	Bress et al, 201
	*All costs were inflated to 2020 USD.		•	

Results

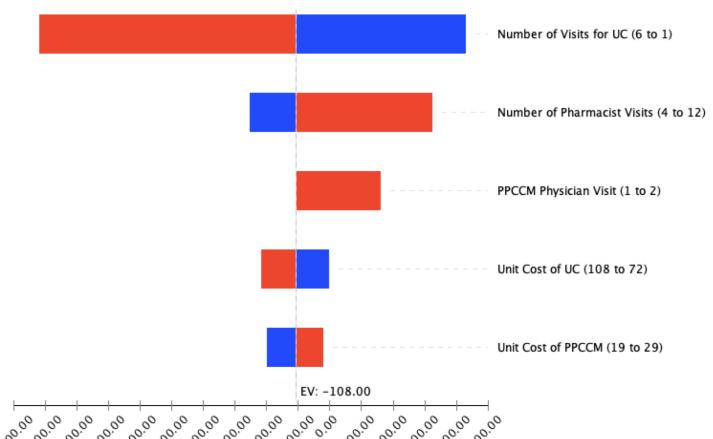

Table 2. Cost-Effectiveness Results PPCCM **Usual Care** Difference Cardiovascular Events 21 per 10,000 0.0321 Nonfatal MI 0.0300 0.0178 29 per 10,000 0.0149 Stroke 0.0225 0.0237 12 per 10,000 Heart failure CVD death 0.0116 0.0143 27 per 10,000 Total downstream healthcare \$1,535.82 \$1,698.64 - \$162.82 \$702.00 Total program costs \$810.00 - \$108.00 Cost-benefit ratio **Dominant**

Figure 2. Tornado Diagram of Incremental Downstream Healthcare Expenditures among Patients
Receiving PPCCM vs. Usual Care

*Only the top 10 variables are shown.

Figure 3. Tornado Diagram of Incremental Cost of PPCCM vs. Usual Care

Abbreviations Used in Figures and Tables: ASHP, American Society for Health Systems Pharmacists; CMS, Centers for Medicare and Medicaid Services; CV, cardiovascular; CVD, cardiovascular disease; UC, Usual Care; MI, myocardial infarction; PPCCM, pharmacist-physician collaborative care model; HF, heart failure; TTR, time in target range; BP, blood pressure

Discussion & Limitations

- When compared to usual care, PPCCM was associated with lower downstream healthcare expenditures, saving an expected \$162.82 per patient over a three-year time horizon.
- Our finding of downstream healthcare savings is consistent with most long-term economic evaluations of clinical pharmacy services for chronic disease state management.⁵
- The lower PPCCM program costs reflected the significantly lower cost of pharmacist time as billed by "incident to" CPT codes than physician visits for hypertension.
- In threshold analysis, the direct cost of provider time was lower for usual care than PPCCM if usual care patients had fewer than two physician visits per year. However, previous studies suggest that most patients with hypertension have two or more hypertension-focused physician visits per year.⁶
- Limitations included: the TTR for systolic BP was collected from a study with a small population⁷ and exclusion of medication costs due to the lack of information.

Conclusions

- In this decision analytic model, PPCCM was less costly to administer and resulted in fewer downstream adverse CV events and healthcare expenditures relative to usual care.
- Although further research is needed to evaluate the longterm costs and outcomes of PPCCM, payer coverage of PPCCM services may improve patients' CV outcomes and reduce future healthcare costs.

References

- 1. Centers for Disease Control and Prevention. Facts About Hypertension.
- 2. Doumas M, Tsioufis C, Fletcher R, Amdur R, Faselis C, Papademetriou V. Time in therapeutic range, as a determinant of all-cause mortality in patients with hypertension. J Am Heart Assoc. 2017;6(11). doi:10.1161/JAHA.117.007131
- 3. Carter BL, Clarke W, Ardery G, Weber CA, James PA, Weg MV, et al. A cluster-randomized effectiveness trial of a physician-pharmacist collaborative model to improve blood pressure control. Circ Cardiovasc Qual Outcomes. 2010;3(4):418-423. doi:10.1161/CIRCOUTCOMES.109.908038
- Carter BL, Ardery G, Dawson JD, James PA, Bergus GR, Douchette WR, et al. Physician/Pharmacist Collaboration to Improve Blood Pressure Control. Arch Intern Med. 2010;169(21):1996-2002. doi:10.1001/archinternmed.2009.358.Physician/Pharmacist
- 5. Talon B, Perez A, Yan C, Alobaidi A, Zhang KH, Schultz BG, et al. Economic evaluations of clinical pharmacy services in the United States: 2011-2017. J Am Coll Clin Pharm. 2020;3(4):793-806. doi:10.1002/jac5.1199
- 6. Ashman JJ, Rui P, Schappert SM. Age Differences in Visits to Office-based Physicians by Adults With Hypertension: United States, 2013. Natl Cent Heal Stat. 2016;(263):1-8.
- 7. Dixon DL, Parod ED, Sisson EM, Van Tassell BW, Nadpara PA, Dow A. Impact of a pharmacist-physician collaborative care model on time-in-therapeutic blood pressure range in patients with hypertension. J Am Coll Clin Pharm. 2020;3(2):404-409. doi:10.1002/jac5.1115

Contact Information

Dr. Jessica S. Jay (jayj@vcu.edu)

Dr. Julie A. Patterson (japatterson2@vcu.edu)